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Maybe long-tailed
but unknown…
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[1] Prototypical Networks for Few-shot Learning, NIPS’17.
[2] Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning, NeurIPS’20.

Biased towards head classes

Biased towards tail classes

Less biased!
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Analysis on (a) recall and (b) precision of pseudo-labels (PLs), and (c) test accuracy on CIFAR10-LT

[1] FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence, NeurIPS’20.
[2] Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning, NeurIPS’20.

• Linear PL from FixMatch [1]: biased towards head classes.
• Semantic PL from USADTM [2]: reversely biased towards tail classes.

Analysis on (a) recall and (b) precision of pseudo-labels (PLs), and (c) test accuracy on CIFAR10-LT

• Complementary each other ⮕ useful cue for reducing the overall bias!



• DASO preserves the recall values on the majority classes.
• DASO increases the recall values on the minority classes, while maintaining the precisions. 

Analysis on (a) recall and (b) precision of pseudo-labels (PLs), and (c) test accuracy on CIFAR10-LT
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Analysis on (a) recall and (b) precision of pseudo-labels (PLs), and (c) test accuracy on CIFAR10-LT

[1] FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence, NeurIPS’20.
[2] Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning, NeurIPS’20.
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• Blending pseudo-labels: adaptively blends semantic PL into linear PL along with different classes for debiasing.
�̂�𝑝′ = 1 − 𝜐𝜐 ⋅ �̂�𝑝 + 𝜐𝜐 ⋅ �𝑞𝑞,

• Semantic Alignment Loss: constructs balanced feature representations for unbiased classifier predictions.

ℒalign = ℋ �𝑞𝑞,𝑞𝑞(𝑠𝑠) ,
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[1] The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop, arXiv preprint:2103.06937.
[2] Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning, NeurIPS 2020.
[3] CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning, CVPR 2021.
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• DASO shows better performance gains compared to baseline DARP and CReST+.
• DASO can improve various supervised / semi-supervised frameworks under imbalance.
[1] Long-tail learning via logit adjustment, ICLR 2021.
[2] ABC: Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021.
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• DASO is far robust to the changes in imbalance of unlabeled data.
 Limited gains from DARP and CReST due to improper assumption (𝛾𝛾𝑙𝑙 = 𝛾𝛾𝑢𝑢) under 𝛾𝛾𝑙𝑙 ≠ 𝛾𝛾𝑢𝑢 scenarios. 
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Class distributions of each data split in Semi-Aves.
Image reference: [1]

[1] The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop, arXiv preprint:2103.06937.

• DASO outperforms previous methods in both 𝒰𝒰 = 𝒰𝒰in and 𝒰𝒰 = 𝒰𝒰in + 𝒰𝒰out cases.
 large gains even when open-set examples are dominant in unlabeled data.
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Train curves for the recall of pseudo-labels and test accuracy. t-SNE visualizations of feature representation from unlabeled data.

• Unbiased pseudo-label improves test accuracy.
 improves performance on the minority classes, while preserving those from the majority classes.

• Tail-class clusters are better identified.
 helps construct tail-class clusters, further reducing the biased predictions from the classifier.



Webpage: ytaek-oh.github.io/daso
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