

DASO: Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced Semi-Supervised Learning

Youngtaek Oh¹ Dong-Jin Kim² In So Kweon¹

¹KAIST ²UC Berkeley / ICSI

CVPR 2022

Background: Semi-supervised Learning (SSL)

- SSL utilizes both labeled data and unlabeled data for training a model.
 - \rightarrow For labeled data, the student model is directly optimized with labels.
 - → Pseudo-labels based on the teacher's predictions are used to optimize the student with unlabeled data.

Background: Challenges in Imbalanced Semi-supervised Learning (SSL)

- Pseudo-labels from unlabeled data are biased, when learning on *long-tailed data*.
- Class distributions of unlabeled data are *unknown*, in practice.

Background: Glimpse of the proposed DASO framework

- DASO class-adaptively blends two complementarily biased pseudo-labels (PLs) to generate unbiased PL.
 - Linear PL from linear classifier (e.g., fc layer) and Semantic PL from similarity-classifier (e.g., [1-2]).

[1] Prototypical Networks for Few-shot Learning, NIPS'17.

[2] Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning, NeurIPS'20.

Motivation: A closer look at the bias of 'Linear' and 'Semantic' pseudo-label

Properties on linear PL from FixMatch [1] and semantic PL from USADTM [2]:

Analysis on (a) recall and (b) precision of pseudo-labels (PLs), and (c) test accuracy on CIFAR10-LT

- Linear PL from FixMatch [1]: biased towards head classes.
- Semantic PL from USADTM [2]: reversely biased towards tail classes.
- Complementary each other ➡ useful cue for reducing the overall bias!

[1] FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence, NeurIPS'20.

[2] Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning, NeurIPS'20.

Motivation: A closer look at the bias of 'Linear' and 'Semantic' pseudo-label

DASO → Blending more semantic PL on the minorities mis-predicted to the head classes!

Analysis on (a) recall and (b) precision of pseudo-labels (PLs), and (c) test accuracy on CIFAR10-LT

- DASO preserves the recall values on the majority classes.
- DASO increases the recall values on the minority classes, while maintaining the precisions.

[1] FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence, NeurIPS'20.

[2] Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning, NeurIPS'20.

Method: Overall DASO framework

- Full DASO framework introduces two core components, *building upon existing SSL learner*.
 - Blending pseudo-labels: <u>adaptively blends</u> semantic PL into linear PL along with different classes for debiasing.

$$\hat{p}' = (1 - v) \cdot \hat{p} + v \cdot \hat{q},$$

• Semantic Alignment Loss: constructs *balanced feature representations* for unbiased classifier predictions.

$$\mathcal{L}_{\text{align}} = \mathcal{H}(\hat{q}, q^{(s)}),$$

Experiments: Experimental setups

- Benchmark datasets
 - (Small-scale) Synthetically long-tailed CIFAR-10/100 and STL-10.
 - Denote γ_l and γ_u as the imbalance ratio / N₁ and M₁ as the head-class size for the labeled data and unlabeled data, respectively.
 - Test various imbalance scenario by changing those parameters above, including $\gamma_l \neq \gamma_u$ as well as $\gamma_l = \gamma_u$ scenarios.
 - (Large-scale) Semi-Aves benchmark [1]
 - Both labeled data (\mathcal{X}) and unlabeled data (\mathcal{U}) have *long-tailed distributions, but mismatch between them* (e.g., $\gamma_l \neq \gamma_u$).
 - The whole unlabeled data (\mathcal{U}) include *large portions of open-set class examples (\mathcal{U}_{out})*; $\mathcal{U} = \mathcal{U}_{in} + \mathcal{U}_{out}$.
- Primary baseline methods: DARP [2] and CReST [3].
 - Both baseline methods require true or estimated class distributions of unlabeled data.
 - DASO does not rely on such ideal assumption.

[1] The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop, arXiv preprint:2103.06937.

[2] Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning, NeurIPS 2020.

[3] CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning, CVPR 2021.

Experiments: Equal class imbalance

• Class distributions of labeled data and unlabeled data are the same ($\gamma_l = \gamma_u$)

	CIFAR10-LT				CIFAR100-LT			
	$\gamma = \gamma_l = \gamma_u = 100$		$\gamma = \gamma_l = \gamma_u = 150$		$\gamma = \gamma_l = \gamma_u = 10$		$\gamma = \gamma_l = \gamma_u = 20$	
Algorithm	$N_1 = 500$	$N_1 = 1500$	$N_1 = 500$	$N_1 = 1500$	$N_1 = 50$	$N_1 = 150$	$N_1 = 50$	$N_1 = 150$
	$M_1 = 4000$	$M_1 = 3000$	$M_1 = 4000$	$M_1 = 3000$	$M_1 = 400$	$M_1 = 300$	$M_1 = 400$	$M_1 = 300$
Supervised	$47.3{\scriptstyle~\pm 0.95}$	$61.9{\scriptstyle~\pm 0.41}$	$44.2{\scriptstyle~\pm 0.33}$	$58.2{\scriptstyle~\pm 0.29}$	$29.6{\scriptstyle\pm0.57}$	$46.9{\scriptstyle\pm0.22}$	$25.1{\scriptstyle\pm1.14}$	$41.2{\scriptstyle\pm0.15}$
w/ LA [36]	$53.3{\scriptstyle~\pm 0.44}$	$70.6{\scriptstyle\pm0.21}$	$49.5{\scriptstyle~\pm 0.40}$	$67.1{\scriptstyle~\pm 0.78}$	$30.2{\scriptstyle~\pm 0.44}$	$48.7{\scriptstyle~\pm 0.89}$	26.5 ± 1.31	$44.1{\scriptstyle\pm 0.42}$
FixMatch [48]	67.8±1.13	77.5 ± 1.32	$62.9{\scriptstyle\pm0.36}$	72.4 ± 1.03	$45.2{\scriptstyle~\pm 0.55}$	$56.5{\scriptstyle\pm0.06}$	$40.0{\scriptstyle\pm0.96}$	50.7 ± 0.25
w/ DARP [26]	$74.5{\scriptstyle~\pm 0.78}$	77.8 ± 0.63	$67.2{\scriptstyle~\pm 0.32}$	$73.6{\scriptstyle\pm0.73}$	$49.4{\scriptstyle~\pm 0.20}$	$58.1{\scriptstyle\pm0.44}$	$43.4{\scriptstyle~\pm 0.87}$	$52.2{\scriptstyle\pm0.66}$
w/ CReST+ [54]	76.3 ± 0.86	$78.1{\scriptstyle~\pm 0.42}$	$67.5{\scriptstyle~\pm 0.45}$	73.7 ± 0.34	$44.5{\scriptstyle~\pm 0.94}$	$57.4{\scriptstyle\pm0.18}$	$40.1{\scriptstyle~\pm1.28}$	$52.1{\scriptstyle\pm0.21}$
w/ DASO (Ours)	$76.0{\scriptstyle\pm0.37}$	79.1 ± 0.75	70.1 ±1.81	75.1 ± 0.77	$\textbf{49.8} \pm 0.24$	$\textbf{59.2} \pm 0.35$	$\textbf{43.6} \pm 0.09$	52.9 ± 0.42
FixMatch + LA [36]	$75.3{\scriptstyle\pm2.45}$	82.0 ± 0.36	$67.0{\scriptstyle\pm2.49}$	$78.0{\scriptstyle\pm0.91}$	$47.3{\scriptstyle~\pm 0.42}$	$58.6{\scriptstyle\pm0.36}$	$41.4{\scriptstyle\pm0.93}$	$53.4{\scriptstyle\pm0.32}$
w/ DARP [26]	$76.6{\scriptstyle~\pm 0.92}$	$80.8{\scriptstyle\pm0.62}$	68.2 ± 0.94	76.7 ± 1.13	$50.5{\scriptstyle~\pm 0.78}$	$59.9{\scriptstyle\pm0.32}$	44.4 ± 0.65	$53.8{\scriptstyle\pm0.43}$
w/ CReST+ [54]	76.7 ± 1.13	$81.1{\scriptstyle~\pm 0.57}$	70.9 ±1.18	$77.9{\scriptstyle\pm0.71}$	$44.0{\scriptstyle\pm0.21}$	$57.1{\scriptstyle\pm0.55}$	$40.6{\scriptstyle~\pm 0.55}$	$52.3{\scriptstyle~\pm 0.20}$
w/ DASO (Ours)	$77.9{\scriptstyle~\pm 0.88}$	82.5 ± 0.08	$70.1{\scriptstyle\pm1.68}$	79.0 ±2.23	$\textbf{50.7} \pm 0.51$	$\textbf{60.6} \pm 0.71$	$44.1{\scriptstyle~\pm 0.61}$	55.1 ± 0.72
FixMatch + ABC [32]	78.9 ± 0.82	83.8 ±0.36	66.5 ± 0.78	80.1±0.45	$47.5{\scriptstyle~\pm 0.18}$	59.1±0.21	41.6 ± 0.83	53.7 ±0.55
w/ DASO (Ours)	80.1 ±1.16	$83.4{\scriptstyle~\pm0.31}$	$\textbf{70.6} \pm 0.80$	80.4 ± 0.56	50.2 ± 0.62	60.0 ±0.32	$\textbf{44.5} \pm 0.25$	55.3 ± 0.53

- DASO shows better performance gains compared to baseline DARP and CReST+.
- DASO can improve various supervised / semi-supervised frameworks under imbalance.

[1] Long-tail learning via logit adjustment, ICLR 2021.

[2] ABC: Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021.

Experiments: Various class distributions for unlabeled data

• Various class distributions of unlabeled data, different from that of labeled data ($\gamma_l \neq \gamma_u$)

	CIFAR10-LT ($\gamma_l \neq \gamma_u$)				STL10-LT ($\gamma_u = N/A$)			
	$\gamma_u = 1$ (uniform)		$\gamma_u = 1/100 \text{ (reversed)}$		$\gamma_l = 10$		$\gamma_l = 20$	
Algorithm	$N_1 = 500$	$N_1 = 1500$	$N_1 = 500$	$N_1 = 1500$	$N_1 = 150$	$N_1 = 450$	$N_1 = 150$	$N_1 = 450$
	$M_1 = 4000$	$M_1 = 3000$	$M_1 = 4000$	$M_1 = 3000$	M = 100k	M = 100k	M = 100k	M = 100k
FixMatch [48]	73.0 ± 3.81	$81.5{\scriptstyle\pm1.15}$	62.5 ± 0.94	71.8 ± 1.70	56.1±2.32	$72.4{\scriptstyle~\pm0.71}$	47.6 ± 4.87	$64.0{\scriptstyle\pm2.27}$
w/ DARP [26]	$79.6{\scriptstyle\pm1.80}$	$85.8{\scriptstyle\pm0.28}$	$70.1{\scriptstyle~\pm 0.22}$	$80.0{\scriptstyle\pm0.93}$	66.9 ± 1.66	$75.6{\scriptstyle\pm0.45}$	$59.9{\scriptstyle\pm2.17}$	$72.3{\scriptstyle~\pm 0.60}$
w/ CReST [54]	83.2 ± 1.67	$87.1{\scriptstyle~\pm 0.28}$	70.7 ± 2.02	80.8 ±0.39	61.7 ± 2.51	71.6 ± 1.17	$57.1{\scriptstyle\pm3.67}$	$68.6{\scriptstyle\pm0.88}$
w/ CReST+ [54]	82.2 ± 1.53	$86.4{\scriptstyle~\pm 0.42}$	62.9 ± 1.39	$72.9{\scriptstyle~\pm2.00}$	61.2 ± 1.27	$71.5{\scriptstyle~\pm 0.96}$	$56.0{\scriptstyle\pm3.19}$	$68.5{\scriptstyle\pm1.88}$
w/ DASO (Ours)	86.6 ± 0.84	88.8 ±0.59	$\textbf{71.0} \pm 0.95$	$80.3{\scriptstyle~\pm 0.65}$	70.0 ±1.19	$\textbf{78.4} \pm 0.80$	65.7 ±1.78	75.3 ± 0.44

- DASO is far robust to the changes in imbalance of unlabeled data.
 - → Limited gains from DARP and CReST due to improper assumption ($\gamma_l = \gamma_u$) under $\gamma_l \neq \gamma_u$ scenarios.

Experiments: Realistic scenarios

• Semi-Aves benchmark with long-tailed distribution and large open-set class unlabeled data

Danahmark	Semi-Aves						
Benchmark	\mathcal{U}	$=\mathcal{U}_{\mathrm{in}}$	$\mathcal{U}=\mathcal{U}_{\mathrm{in}}+\mathcal{U}_{\mathrm{out}}$				
Method	Last Top1	Med20 Top1	Last Top1	Med20 Top1			
Supervised	41.7 ± 0.32	41.7 ± 0.32	41.7 ± 0.32	41.7 ± 0.32			
FixMatch [48]	$53.8{\scriptstyle\pm0.17}$	53.8 ± 0.13	45.7 ± 0.89	$46.1{\scriptstyle~\pm 0.50}$			
w/ DARP [26]	$52.3{\scriptstyle~\pm 0.48}$	52.1 ± 0.48	46.3 ± 0.70	46.4 ± 0.61			
w/ CReST [54]	$52.1{\scriptstyle\pm 0.36}$	52.2 ± 0.27	43.6 ± 0.69	43.6 ± 0.68			
w/ CReST+ [54]	$53.9{\scriptstyle\pm 0.38}$	$53.8{\scriptstyle\pm0.38}$	45.1 ± 1.09	45.2 ± 1.00			
w/ DASO (Ours)	$54.5{\scriptstyle~\pm 0.08}$	$54.6{\scriptstyle\pm0.12}$	$\textbf{47.9} \pm 0.41$	47.9 ±0.38			

Class distributions of each data split in Semi-Aves. Image reference: [1]

- DASO outperforms previous methods in both $U = U_{in}$ and $U = U_{in} + U_{out}$ cases.
 - → large gains even when open-set examples are dominant in unlabeled data.

[1] The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop, arXiv preprint:2103.06937.

Analysis: Understanding the effects of DASO on debiasing pseudo-labels

Train curves for the recall of pseudo-labels and test accuracy.

t-SNE visualizations of feature representation from unlabeled data.

- Unbiased pseudo-label improves test accuracy.
 - → improves performance on the minority classes, while preserving those from the majority classes.
- Tail-class clusters are better identified.
 - → helps construct tail-class clusters, further reducing the biased predictions from the classifier.

Summary

Poster Session 2.2 22 June, 2:30PM-5:00PM Poster ID: 180b

Webpage: <u>ytaek-oh.github.io/daso</u> Code: <u>github.com/ytaek-oh/daso</u> Contact: <u>youngtaek.oh@kaist.ac.kr</u> **TL;DR**: DASO for debiasing pseudo-labels for imbalanced semi-supervised learning.

- We propose a new pseudo-labeling framework for SSL under *imbalanced data*, termed
 Distribution-Aware Semantics-Oriented (DASO) Pseudo-label, with two core components:
 - <u>Class-adaptive blending</u> of two complementary pseudo-labels.
 - <u>Semantic alignment loss</u> to construct balanced feature representations.
- We show DASO is versatile and applicable to various practical scenarios.
 - Easily built upon existing SSL algorithms and coupled with re-balancing frameworks.
 - Effective under various class distributions of unlabeled data.
- More experimental results and visualizations can be found in the paper!