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Abstract

This report introduces RETRIEVER, our solution for the
2023 Challenge on zero-shot image captioning evaluation
at the New Frontiers for Zero-Shot Image Captioning Eval-
uation (NICE) Workshop. RETRIEVER efficiently improves
image captioners by retrieving from an external memory
of image-text pairs in two steps. First, a set of image-text
pairs for training is fetched by applying explicit retrieval
module to the intended target dataset. In addition, we fuse
the knowledge associated with the input sample queried
from the retrieval module during training and inference.
With this complete framework, specific knowledge in cap-
tions can be easily incorporated into the captioner even in
the absence of ground-truth captions, and the model can
generate better captions conditioned on relevant knowledge
from an external data source. Experimentally, RETRIEVER
improves the base image captioner by the CIDEr score
by 229.4 in (held-out) validation data of NICE Challenge
2023 despite its simplicity. On the test data, notably, we
ranked 2nd in CIDEr score, and 1st in all the other metrics.
Our implementation including codes and checkpoints will
be made public at https://github.com/ytaek-
oh/retriever.

1. Introduction

The NICE dataset [1] is a zero-shot evaluation dataset
that assesses the robustness of image captioning models. It
contains 26k images with captions sourced from Shutter-
stock [2], providing a far larger range of visual concepts
from various domains and image types. Moreover, unlike
other typical image captioning datasets such as COCO [4],
captions in the NICE dataset often contain specific informa-
tion like camera angle descriptions and proper nouns like
place names. Accordingly, even foundational vision and
language models in million or billion scale of parameters
pretrained on large-scale image-text corpus [10, 12] strug-
gle to predict these new concepts under zero-shot settings.
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Figure 1. Overview of our RETRIEVER framework. RETRIEVER

improves image captioning under zero-shot settings in two stages:
retrieval-based dataset discovery for training and retrieval-based
fusion conditioned on examples similar to inputs.

To address these challenges, we propose RETRIEVER,
a generic framework that consists of an image captioning
model and an explicit retrieval module for efficiently ex-
panding the knowledge of the model by referring to an
external memory dataset. Our approach draws inspiration
from recent success of retrieval-augmented models in im-
age recognition [8, 13] and language models [3, 7]. Extend-
ing this to image captioning, our RETRIEVER discovers and
combines useful knowledge to the model, which is advanta-
geous under zero-shot settings where direct fine-tuning on
massive data is time and computationally prohibitive.

As shown in Fig. 1, the RETRIEVER framework en-
hances the captioning model in two stages. Firstly, to ini-
tiate training a captioning model in the absence of a train-
ing dataset, an explicit retrieval module is employed on the
NICE dataset. This results in a set of image-text pairs that
closely mimic the desired distribution of captions with im-
ages. Secondly, during training and inference, we explicitly
combine the knowledge associated with the input sample
into the model. This helps the model to generate improved
captions by conditioning on useful external knowledge. As
note, our work differs from previous retrieval-based image
captioning approaches [16, 17] in that we focus on fine-
tuning of captioning model via retrieval-based relevant data
discovery as well as retrieval augmented knowledge fusion.
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2. Our Approach

Our RETRIEVER includes a captioning model and a re-
trieval module, which will be detailed in Secs. 2.1 and 2.2.
Then, Sec. 2.3 describes the retrieval process for selecting
samples for training our model. Finally, Sec. 2.4 explains
the how the retrieved knowledge based on the input query
is fused with the model input during training and inference.

2.1. Image Captioning Model

Our RETRIEVER is a generic framework, meaning that
our framework can be applied to any captioning model that
is composed of an image encoder and a language decoder
for generating captions. We choose BLIP-2 [12] as our
base captioning model for its scalability and performance.
For the image encoder and language decoder architecture,
we opt to ViT-g/14 [6] and OPT2.7B [18], respectively. We
initialize BLIP-2 with official weights after from the phase
after the generative pretraining phase.

When we further fine-tune our BLIP-2 model, we keep
the language decoder frozen and update the remaining pa-
rameters from image encoder and Q-Former, following the
fine-tuning procedure for image captioning task [12]. Note
that the initial BLIP-2 model here without any fine-tuning
already has the captioning ability as a result of the genera-
tive pretraining objective.

2.2. Retrieval Module

Given an input query image, the retrieval module re-
trieves a set of related examples from an image-text pair
dataset saved in the external memory. More specifically,
it performs a k-nearest neighbor (kNN) search with cosine
similarity as a metric, where it compares the query image to
all the images in the memory dataset as keys in the embed-
ding space. For efficient querying, we build the index using
Hierarchical Navigable Small World (HNSW) approximate
k-NN lookup [15] in FAISS library [9], with a hyperparam-
eterM of 32. Note that such assignment is processed offline
before training so computational overhead during training is
negligible.

For building the memory dataset, we downloaded Shut-
terstock image-text pairs listed from the metadata1. Out of
a collection of 15M image-text pairs, we curate a dataset of
1.1M pairs where the image category is specified as photo
to fit our computational capacity. To obtain embeddings
from images, we apply the same image encoder (ViT-g/14)
in BLIP-2 initialized as mentioned in Sec. 2.1 to both query
and memory dataset. We plan to share the list of images and
the FAISS index file publicly for future research.

1https://github.com/mlfoundations/clip_quality_
not_quantity
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Figure 2. Examples of the discovered images with corresponding
captions retrieved from the external memory dataset. These re-
trieved samples are used to further fine-tune our captioning model.

2.3. Dataset Discovery

As Tab. 1 points out, BLIP-2 model after pretraining on
web-scale data and even fine-tuning on COCO exhibits poor
performance on NICE dataset. This indicates that simply
fine-tuning large models on a large amount of data may
not be effective under zero-shot evaluation of NICE task.
Therefore, we propose to discover data samples for training
that are relevant to the target task using the retrieval module
explained in Sec. 2.2. Specifically, we use the NICE dataset
of size N as the query and retrieve k image-text pairs per
query image from the memory dataset, resulting in kN ex-
amples. After a deduplication step, we obtain a training
dataset of N̂ unique image-text pairs X := {(xi, ci)}N̂i=1,
where N̂ < kN . Fig. 2 showcases some examples of im-
ages with corresponding captions retrieved from an external
dataset, using the test set of the NICE dataset as the query.

2.4. Retrieval-based Fusion

While fine-tuning BLIP-2 with the data in Sec. 2.3, in-
spired by retrieval-augmented models [8,17], we further in-
corporate the knowledge associated with the input queries
into the model. This approach can help address challenging
scenarios such as long-tailed or zero-shot examples, where
learning becomes difficult for typical parametric models.

In detail, the retrieval module in Sec. 2.2 performs kNN
search for an input xi, and then produces a set of value em-
beddings Vk(xi) using the indices of retrieved images:

Vk(xi) = [v1, v2, · · · , vk] , where vj = ψ(cj), (1)

Here, a separate language encoder ψ : c → RN×dv maps
the caption cj corresponding to each retrieved image xj to
the value embeddings vj with length ofN . These value em-
beddings provide rich contextual information complemen-
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(b) Fusion in visual patch token embeddings.

Figure 3. Illustrations of two potential locations for integrating the retrieved knowledge from the query into the BLIP-2 architecture. (a)
The fused feature ẑi is obtained by combining the output query representation zi with the aggregated knowledge, at the output level of
Q-Former. (b) ẑi is produced by fusing the visual patch token embeddings zi with the aggregated knowledge.

tary to the knowledge that the original model has. We then
combine such knowledge with the input query zi ∈ RM×dz .
Note that zi is determined by the location of the fusion pro-
cess in the model as described in Fig. 3. Given the token
embeddings zi as the input query, we aggregate the value
features by averaging [8] and concatenate it with zi:

ẑi = Concat

zi, ϕ
1

k

k∑
j=1

vj

 , (2)

where ϕ : Rdv → Rdz is a fully connected layer to match
the channel length of vj to that of the token embeddings zi.

For ψ(·), we use the Q-Former to produce the value em-
beddings, which is initialized from the BLIP-2 after pre-
training on the combination of image-text matching (ITM),
image-text contrastive learning (ITC), and image-grounded
text generation (ITG) objectives. Its architecture is identi-
cal to that of BERTbase [5]. Here, the dimension of the value
embeddings dv is 768, which is then projected to a vision
dimension dz by ϕ(·).

The fusion process in Eq. (2) varies based on the choice
of zi. We categorize these cases into two based on the lo-
cation of fusion within the architecture of BLIP-2 as shown
in Fig. 3 and verify the effectiveness of each case in Tab. 2.
Output of query token embedding. During fine-tuning
BLIP-2, the query tokens interact with visual embeddings
from the image encoder via the cross-attention layers in the
Q-Former. This generates the output query representation
Zi which has the same size as a value feature v ∈ RN×dv ,
where N is 32 and dv is 768 as illustrated in [12].

Here, we can augment the LLM decoder input, which
is originally Zi, with the relevant knowledge. As depicted
in Fig. 3a, the fused representation ẑi ∈ R2N×dv can be
obtained by concatenating zi with the aggregated value fea-
tures and is further fed into the LLM decoder.

Method Num. data BLEU@1 SPICE CIDEr

pretrained BLIP-2 0 22.6 21.2 79.6
COCO fine-tuned BLIP-2 0 28.9 17.8 68.0

Randomly sampled data 10901 27.8 22.5 83.4
Data discovery (k=1) 10901 45.8 33.0 196.4

Randomly sampled data 19583 27.5 21.7 79.8
Data discovery (k=2) 19583 44.4 32.3 189.1

Table 1. Comparisons of different approaches for utilizing re-
trieved data relevant to the target task, as explained in Sec. 2.3.
Training on the retrieved dataset leads to significantly better per-
formance than simple pretraining or fine-tuning on COCO. ‘Num.
data’ refers to the number of datapoints used for training.

Visual patch token embedding. Alternatively, we can di-
rectly combine the visual information with the context from
the retrieved captions. As shown in Fig. 3b, we consider the
output of the image transformer as zi and concatenate these
visual patch tokens with the aggregated value features, pro-
ducing a fused representation ẑi ∈ R(M+N)×dz . This en-
ables better interactions with the query token embeddings
in the Q-Former through the cross-attention layers.

3. Experiments

3.1. Implementation details

Fine-tuning settings. We train BLIP-2 on our training
dataset specified in Sec. 2.3. The image encoder is ViT-
g/14, and the language decoder is OPT2.7B. We resize im-
ages to 364×364 resolution, resulting in the length of patch
tokens M 677. During training, we freeze the language
decoder. We use an AdamW optimizer [14] with a peak
learning rate of 4e-5 and weight decay of 0.05. We decay
the learning rate with a cosine schedule and also apply 500
steps of linear warm-up strategy. Our batch size is 16 per
GPU, and we train the model using four Quadro RTX 8000
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Method Num. BLEU@1 SPICE CIDEr

pretrained BLIP-2 0 22.6 21.2 79.6
w/ data discovery (k=1) 10901 45.8 33.0 196.4

+ query output fusion (k=1) 10901 44.8 31.6 167.6
+ query output fusion (k=2) 10901 36.0 26.4 117.0
+ query output fusion (k=3) 10901 45.8 34.1 199.9

+ patch token fusion (k=1) 10901 45.5 32.5 190.1
+ patch token fusion (k=2) 10901 46.0 32.7 192.2
+ patch token fusion (k=3) 10901 46.1 33.8 201.1

(a) Fine-tuning on a dataset from data discovery (k=1) with 10k samples.

Method Num. BLEU@1 SPICE CIDEr

pretrained BLIP-2 0 22.6 21.2 79.6
w/ fine-tuning on NICE val 4000 50.1 36.8 238.3

+ query output fusion (k=1) 4000 52.7 38.9 260.6
+ query output fusion (k=2) 4000 51.8 37.4 249.6
+ query output fusion (k=3) 4000 43.4 29.4 153.4

+ patch token fusion (k=1) 4000 52.5 38.3 261.4
+ patch token fusion (k=2) 4000 52.4 38.3 255.8
+ patch token fusion (k=3) 4000 52.8 38.6 263.3

(b) Fine-tuning on a subset of NICE validation data with 4k samples.

Table 2. Comparisons of different locations for retrieval-based fusion, across different types of query dataset for training and varying
amount of caption features to be averaged. (a) Fine-tuning on a data constructed from the data discovery (k=1). (b) Fine-tuning on a subset
of NICE validation data. We find that fusing on visual patch tokens produces consistent improvements than fusing on query output level.

Method Num. data BLEU@1 SPICE CIDEr

pretrained BLIP-2 0 22.6 21.2 79.6

fine-tuning on NICE val 4000 50.1 36.8 238.3
+ Data discovery (k=1) 14901 55.8 42.6 305.1
+ patch token fusion (k=2) 14901 56.3 42.7 309.0

Results on NICE Test set 15901 58.0 45.5 324.9

Table 3. Results achieving the top-scoring entry. Our final model
produced a CIDEr score of 324.9 on the NICE test set.

GPUs, each with 48GB memory. Our implementation is
built on top of the LAVIS library [11], and we generally
adopt its training protocols unless specified otherwise.
Evaluation setup. During the decoding step for produc-
ing captions, we set the minimum and maximum sequence
lengths to 8 and 30, respectively, and use a beam size of 5.
To measure the captioning performance, we primarily uti-
lize a 5k validation split of the NICE dataset. We use three
commonly used metrics: BLEU, SPICE, and CIDEr scores.

3.2. Main Results

Our experimental design aimed to evaluate the efficacy
of dataset discovery, as well as the retrieval-based fusion
strategy. Tabs. 1 and 2 present the results of these experi-
ments, respectively. Finally, as shown in Tab. 3, we jointly
apply two approaches to create our final model for submit-
ting to the evaluation server.
Effectiveness of data discovery. Tab. 1 compares training
datasets for fine-tuning BLIP-2 by evaluating on the NICE
evaluation dataset. For the dataset discovery process, we
set the query dataset as the test split of NICE dataset, and
vary the number of image-text pairs per query sample k to
one and two. This resulted in 10,901 and 19,583 distinct
image-caption pairs for training, respectively.

Our first finding is that zero-shot approaches that do not
explicitly use either Shutterstock or NICE data for train-
ing result in unsatisfactory captioning performance. Specif-
ically, both of pretrained BLIP-2 model and COCO fine-
tuned one show CIDEr scores of 79.6 and 68.0 on validation
split of NICE dataset, respectively.

Furthermore, we observe that when fine-tuning on ran-
domly sampled Shutterstock pairs of the same size from
the dataset discovery process, the resulting performance is
significantly inferior compared to that achieved through the
dataset discovery process itself. This finding highlights the
importance of retrieval process that discovers image-text
pairs beneficial to the NICE captioning task.

Finally, fine-tuning on the discovered data from retrieval
process improved the CIDEr scores to 196.4 and 189.1
when k = 1 and k = 2 respectively. As note, we found that
using lower samples was more effective due to the presence
of untrimmed captions crawled from the web, which could
introduce noise during training.
Effectiveness of retrieval-based fusion. We investigate the
effectiveness of the retrieval-based fusion mechanism with
respect to different fusion locations outlined in Sec. 2.4. As
shown in Tab. 2, we evaluate on two different types of train-
ing dataset, where Tabs. 2a and 2b correspond to the data
from the dataset discovery with k of 1 and a subset of NICE
validation split in 4k samples, respectively. We vary the
number of value features to be averaged in Eq. (2) from one
to three. As note, we use the remaining 1k samples of NICE
validation data for evaluation.

Fusing the retrieved knowledge on both query output
representations and visual patch token embeddings was ef-
fective compared to the pretrained BLIP-2 without any
training. However, fusing on query output representation
shows unstable and poor results at lower k value. When
fusing on patch token embeddings, increasing the number
of value features (e.g., higher k) led to better performance.
Top-scoring Entry. As presented in Tab. 3, to achieve the
top-performing entry, we first fine-tuned the baseline BLIP-
2 on 4k samples of the NICE validation data. This resulted
in a CIDEr score of 238.3 on the remaining 1k held-out
validation data. We then applied the data discovery with
k of 1, followed by retrieval-based fusion on visual patch
token embeddings with k of 2. This led to CIDEr scores of
305.1 and 309.0, respectively, as in the third and fourth rows
of Tab. 3. For our final test model, we included the entire
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NICE validation data in training along with the data from
dataset discovery, and retrained the model. The final model
was then evaluated on the test data and the prediction re-
sults are submitted to the evaluation server. As shown in the
last row of Tab. 3, our top-scoring model achieved a CIDEr
score of 324.9 on the test split of NICE dataset, scoring as
the second place on CIDEr while taking the first place in all
the other captioning metrics on the official leaderboard.

3.3. Captioning Results

We present captioning results on some samples of the
validation set of NICE data in Fig. 4. We compare the cap-
tion predictions of the pretrained BLIP-2 and our model in
CIDEr scores of 79.6 and 309.0 respectively in Tab. 3 along
with the ground-truth captions. In addition, we show the
top-2 retrieved images with corresponding captions from
the query images. Through the retrieval-based fusion mech-
anism, the captions generated by our model are able to cap-
ture specific knowledge and concepts present in the ground-
truth captions. For example, our captions include details
like camera angle descriptions and proper nouns such as city
or country names, as highlighted in green and blue color.
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Figure 4. Comparisons of the caption predictions on the query images taken from the NICE validation set. On the right side, we present
the top-2 retrieved images along with their corresponding captions derived from the query. This retrieved knowledge improves the caption
predictions of our model by incorporating specific knowledge and concepts found in the ground-truth captions of NICE data.
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