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ABSTRACT

The goal of this work is to develop self-sufficient framework for Continuous
Sign Language Recognition (CSLR) that addresses key issues of sign
language recognition. These include the need for complex multi-scale
features such as hands, face, and mouth for understanding, and absence
of frame-level annotations. To this end, we propose (1) Divide and Focus
Convolution (DFConv) which extracts both manual and non-manual
features without the need for additional networks or annotations, and (2)
Dense Pseudo-Label Refinement (DPLR) which propagates non-spiky
frame-level pseudo-labels by combining the ground truth gloss sequence
labels with the predicted sequence. We demonstrate that our model
achieves state-of-the-art performance among RGB-based methods on
large-scale CSLR benchmarks, PHOENIX-2014 and PHOENIX-2014-T,
while showing comparable results with better efficiency when compared
to other approaches that use multi-modality or extra annotations.

Project page with demo: https://mm.kaist.ac.kr/projects/ssslr

1. INTRODUCTION

The Continuous Sign Language Recognition (CSLR) task aims to rec-
ognize a gloss1 sequence in a sign language video [2, 3, 4]. To capture
the meaning of the sign expressions from a signer, recent works obtain
manual and non-manual expressions by fusing RGB with other modalities
such as depth [5], infrared maps [6] and optical flow [7], or by explicitly
extracting multi-cue features [3, 8, 9, 10] or human keypoints [11] using
off-the-shelf detectors. However, using such extra components introduce
bottlenecks in both training and inference processes. In addition, most
CSLR datasets only have sentence-level gloss labels without frame- or
gloss- level labels [3, 12, 13]. To overcome insufficient annotations,
the Connectionist Temporal Classification (CTC) [14] loss has been
traditionally opted to consider all possible underlying alignments between
the input and target sequence. However, using the CTC loss without true
frame-level supervision produces temporally spiky attention which can
make the model fail to localize important temporal segments [15].

Accordingly, we develop self-sufficient framework for CSLR, which
provides meaningful gloss supervision while capturing helpful multi-cue
information without additional modalities or annotations. To this end, we
propose two novel methods: Divide and Focus Convolution (DFConv)
and Dense Pseudo-Label Refinement (DPLR). DFConv is a task-aware
convolutional layer which extracts visual multi-cue features by dividing
spatial regions to focus on partially specialized features. Note that DFConv
is designed to leverage prior knowledge about the structure of human
bodies without any additional networks or modalities. In addition, DPLR
elaborately refines an initially predicted gloss sequence from the model by
referring a ground-truth gloss, and propagates frame-level gloss supervision
without additional networks, unlike [7, 16]. We emphasize that DPLR is
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1Glosses are the smallest units having independent meaning in sign language [1].
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Fig. 1. Comparison of GradCAM between VGG-11 and DFConv, and an
example of the generated pseudo-labels before and after DPLR. DFConv
better highlights multiple individual elements (hands, faces) across the
entire scene whereas VGG-11 simply highlights a small region (i.e., the
right hand). DPLR corrects the mispredicted gloss with the ground truth
gloss (e.g., red box in Vanilla pseudo-labels) and densifies the pseudo-labels
with the nearest glosses, which results in a more informative supervision
without external knowledge.

generally applicable to other CSLR architectures or frameworks [2, 15]
to bring performance gain by reducing missing glosses in predictions.

We extensively validate the effectiveness of DFConv and DPLR. We
also show that the whole self-sufficient counterpart achieves state-of-the-art
results among RGB-based methods and is comparable to other methods that
use extra knowledge with better efficiency on two publicly available CSLR
benchmarks [12, 13]. To summarize, our main contributions are as follows:

(1) We design a task-specific convolutional layer, named DFConv, that
efficiently extracts non-manual and manual features without additional
networks or annotations. (2) We also introduce DPLR, a novel pseudo-label
generation method, to propagate frame-level supervision by using the
combination of the ground truth gloss sequence and the predicted temporal
segmentation information. (3) We conduct extensive experiments on two
publicly available CSLR benchmarks, showing state-of-the-art performance
compared to other RGB-based methods, and competitive results compared
to other approaches that use multi-modality or additional knowledge with
better efficiency.

2. RELATED WORKS

Multi-cue fusion methods for CSLR task can be categorized into multi-
semantic and multi-modal methods. Multi-semantic works [4, 13, 9, 10]
utilized hand-crafted or weak-labeled features such as detected hands,
trajectories of hands, and body parts, then integrate these features into
frames to predict the gloss sequences. On the other hand, multi-modal
works [6, 5, 17] use color, depth, and optical flow to extract orthogonal fea-
tures. [7] proposed a multi-modality integration framework of appearance
and motion cues by using both RGB frames and optical flow. Most recently,
[11] fused human body keypoints extracted by an off-the-shelf network [18].

https://mm.kaist.ac.kr/projects/ssslr
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Fig. 2. Overall architecture. In Spatial Modeling, non-manual and manual features are extracted through DFConv followed by a Multi-Cue embedding
layer. In Temporal Modeling, temporal features are extracted for gloss sequence prediction by integrating each element. Finally, the gloss probability
vectors are obtained through sequence learning.

Unlike the methods listed above, we design DFConv that captures both
manual and non-manual expressions from RGB video, without relying on
any additional hand-crafted features or multi-modal data.

In addition, the CSLR task [3, 8, 16, 19] naturally corresponds to
weakly-supervised learning problem due to the lack of frame-level gloss
annotations. The challenge lies in the ambiguous semantic boundary of
the adjacent glosses from sign videos [3, 13, 20]. To address this issue,
some works in CSLR field generate frame-level pseudo-labels from sparse
gloss annotations [4, 21], which can be inherently noisy and reliant on the
model’s performance. Most recently, the CTC loss [14] is employed to fa-
cilitate end-to-end training of a deep learning model [22, 23], and consider
all the feasible underlying alignments between the predictions and labels.
However, as observed in [15, 24], directly optimizing CTC can cause spiky
attention in predictions, favoring more blank glosses. Recent works tackle
this issue by balancing the blank output and meaningful glosses [2], and by
directly supervising the visual features via visual alignment constraint [15]
and mutual knowledge transfer [25]. In contrast, we propose Dense Pseudo-
Label Refinement (DPLR) that provides dense and reliable supervision
signals obtained by gloss predictions of the model to visual features.

3. METHOD

CSLR task aims to map a given input video to its corresponding gloss
sequence g = {gn}Nn=1 with N glosses. As shown in Fig. 2, a sign video
is fed into the spatial modeling module consisting of several Divide and
Focus Convolution (DFConv) layers, and a multi-cue embedding layer to
extract manual and non-manual features. The multi-cue features of all the
frames are passed through the temporal modeling module, that is comprised
of Bottleneck-based Temporal Attention (BTA), which captures more
important information among adjacent frames, and Temporal Multi-Cue
(TMC) blocks of [11]. Then, the output of last TMC block is passed
through the sequence learning stage, which is composed of a Bi-LSTM
layer [26] and FC layer to predict the gloss sequence from the final model
output. Finally, the Dense Pseudo-Label Refinement (DPLR) module
is introduced to effectively train the latent representations by generating
corrected and densified frame-level pseudo-labels.

3.1. Divide and Focus Convolution

We observe from various CSLR datasets [12, 13] that non-manual expres-
sions occur frequently in the upper region of the image, while manual

expressions occur mainly in the lower region. As shown in Fig. 1, despite
the importance of both non-manual and manual expressions appearing
in the entire image area, the conventional 2D convolution layer tends to
capture the only one most dominant information (i.e., right hand) over
the whole image. To address this issue, we propose a novel Divide and
Focus Convolution (DFConv) layer designed to independently capture
non-manual features and manual features solely from RGB modality.

The structure of the DFConv is illustrated in Fig. 2. Inspired by the ob-
servation in [27], DFConv physically limits the receptive field that increases
as the network deepens by subdividing an image [9] into upper (for non-
manual expressions) and lower regions (for manual expressions) with the di-
vision ratio of r, where r is the ratio of spatial height of the upper region hu

to the original spatial height h given by r= hu
h

. To precisely capture the dy-
namic manual expressions, we further subdivide the lower region into Nm

groups. For the upper region, this kind of subdivision is not required since
non-manual expressions do not consist of the same amount of dynamics.
We empirically observe that subdividing the upper region reduces the per-
formance as well. Note that different convolution weights are used for each
upper and lower regions, and the weights are shared within the subdivided
lower regions. This helps the model to focus more on visually meaningful
areas that represent complex sign expressions in the segmented image.

Unlike other methods that leverage external knowledge, we only
introduce two hyper-parameters r and Nm, which make our method signif-
icantly more efficient. By virtue of simply splitting the frames horizontally,
DFConv efficiently captures multi-cue features simultaneously without
equipping costly human pose estimator like STMC [11] that increases
model complexity and inference time (See project page). To further embed
the outputs of stage 3 in Fig. 2 into the three individual multi-cue vectors
(i.e., full-frame, non-manual and manual), a simple and effective Multi-Cue
Embedding (ME) layer is employed. The full-frame features containing
global information are passed through two 2D convolution layers, and
the remaining features (non-manual and manual) are passed through only
single 2D convolution layer. Finally, all these features are vectorized by
max pooling with a 2×2 kernel followed by an average pooling layer.

3.2. Dense Pseudo-Label Refinement

Most existing sign language datasets do not have temporally localized
gloss labels [3, 12, 13, 28]. Due to the characteristics of the CTC loss
used in training CSLR models without frame-level labels, the output
sequence predictions of models are naturally induced to be sparse. As



𝑔𝑔=[             ]

Cross Entropy

Blank GlossSemantic gloss GT gloss sequence with length(𝑔𝑔) = 3.

Correct with 
GT gloss

Predicted gloss from
model output (𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

Dense
Pseudo-Label ( �𝑄𝑄)

Cross Entropy

Predicted gloss from
latent feature ( �𝑄𝑄)

DPLR Case 1.
length(𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = length(𝑔𝑔)

DPLR Case 2.
length(𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ≠ length(𝑔𝑔)

stop-grad× stop-grad×

gradient flow gradient flow

Refinement loss
(𝐿𝐿𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖)

Fig. 3. Dense pseudo-label generation process in DPLR. (Case 1): gloss
sequence length predicted by the model and the ground truth are matched.
(Case 2): gloss sequence length predicted by the model and the ground
truth is off by one word. DPLR provides latent features with frame-level
supervision to compensate for the CTC loss while reducing the noise of
pseudo-labels by the correction mechanism of Case 1.

a result, it is difficult for CSLR models to receive direct and precise
alignment supervision for each gloss token. In addition, without alignment
supervision, CSLR models learn entire sequences as a whole instead of
individual gloss words. This limits the robustness of models severely as
they rely on entire sequences. In other words, models can easily confuse
similar sequences with slightly different words. In order to mitigate these
drawbacks, we introduce an additional training objective called Dense
Pseudo-Label Refinement (DPLR) that uses the alignment information
predicted by the model to generate Dense Pseudo-Labels (DPL). Then,
the model is further refined with these generated pseudo-labels.

In DPLR process, we have two separate cases for generating DPL Q̂
as illustrated in Fig. 3. We first compare the sequence length of non-blank
predictions of the model with its corresponding ground truth gloss sequence.
If the sequence length is matched, we go to Case 1, where we compare
the predicted gloss sequence with the ground truth sequence. If a predicted
gloss is wrong, we swap in correct gloss from the ground truth to increase
the reliability of the pseudo-labels. As mentioned before, the predictions
are sparse due to the nature of the CTC loss, and most of the predictions
along the temporal axis are blanks. Here, we create DPL by filling each
blank with the nearest predicted glosses. In the case where the predicted
sequence length differs from the ground truth by one gloss length, we go
to Case 2. Then, we simply densify the pseudo-label using the nearest
gloss without swapping any glosses regardless of the correctness of the
glosses. In the case that the sequence length differs by more than one gloss,
we disregard that sequence as this might cause predictions of the model
to degrade, so we do not propagate refinement loss Lrefine.

Using pseudo-labels only from Case 1 and Case 2, we refine the model
with Cross Entropy (CE) loss on the latent features similar to [2] as follows:

Lrefine=CE(Q̂,Q̃), (1)
where Q̂ is dense pseudo-labels and, Q̃ is gloss probability acquired from
latent features, which is the final output of the inter-cue path (See Fig. 2).
Note that we demonstrate the efficacy of ‘Densify’ and ‘Refine’ processes
in Table 4 ,and show that DPLR is generalizable to other models in our
project page.

In addition, the quality of pseudo-labels generated from the model
depend heavily on the model’s performance. As the CSLR task aims
to translate a sign language video into a gloss sequence by mapping
several adjacent frames into one gloss, it is important to extract key
frames in the video. Hence, we design the Bottleneck-based Temporal
Attention (BTA) module to attend to the temporally salient frames among
adjacent frames. BTA consists of a temporal-wise attention map using
1D convolution layers and a max pooling layer to capture the temporally
salient frames. The CTC loss is then propagated to the bottleneck, after

the max pooled features, hence the name is Bottleneck.
With our additional modules, our final loss function is as follows:

Ltotal=Linter+λ1Lintra+λ2Lrefine+λ3Lbta, (2)
where, Linter, Lintra and Lbta are all CTC losses. Lbta is the average
of all the TMC block’s CTC losses and λ1, λ2, and λ3 are loss weights.

4. EXPERIMENTS

Dataset and Evaluation Metric. We conduct experiments on two publicly
available CSLR benchmarks to validate our self-sufficient framework:
PHOENIX-2014 [13] and PHOENIX-2014-T [12]. We adopt the Word Er-
ror Rate (WER)2 [13] for evaluation. Furthermore, in our project page, we
upload a demo video to visually demonstrate the effectiveness of DFConv.

Extra WER (%)
Method Annotations Dev Test

DeepHand [19] Hand 47.1 45.1
SubUNets [8] Hand 40.8 40.7
Deep Sign [29] Hand 33.3 38.8
Staged-Opt [22] Hand 39.4 38.7
LS-HAN [3] Hand - 38.3
Align-iOpt [24] - 37.1 36.7
SF-Net [30] - 35.6 34.9
DPD+TEM [31] - 35.6 34.5
cnn-lstm-hmm [4] - 27.5 28.3
Re-sign [21] - 27.1 26.8
DNF [7] - 23.8 24.4

Extra WER (%)
Method Annotations Dev Test

cnn-lstm-hmm [4] Mouth 26.0 26.0
STMC [11] - 25.0 -
SFL [23] - 24.9 24.3
FCN [2] - 23.7 23.9
DNF+SBD-RL [32] - 23.4 23.5
DNF [7] Flow 23.1 22.9
VAC [15] - 21.2 22.3
CMA [33] - 21.3 21.9
SMKD [25] - 20.8 21.0
STMC [11] Pose 21.1 20.7

Ours - 20.9 20.8

Table 1. Comparison of performance in WER (%) on PHOENIX-2014
benchmark. Ours shows the comparable performances to the existing
state-of-the-art methods using either pose [11] or algorithmic gloss segmen-
tation [25] even without extra annotations.

Extra WER (%)
Method Annotations Dev Test

cnn-lstm-hmm [4] - 24.5 26.5
FCN [2] - 23.3 25.1
SLRT [34] - 24.9 24.6
SLRT [34] Text 24.6 24.5

Extra WER (%)
Method Annotations Dev Test

cnn-lstm-hmm [4] Mouth+Hand 22.1 24.1
SMKD [25] - 20.8 22.4
STMC [11] Pose 19.6 21.0

Ours - 20.5 22.3

Table 2. Comparison of performance in WER (%) on PHOENIX-2014-T
benchmark. Our framework achieves the state-of-the-art performances
among RGB-based approaches, while shows comparable performances
with the pose-based multi-cue method [11].

4.1. Experimental Results

We compare our framework with recent CSLR methods on both PHOENIX-
2014 [13] and PHOENIX-2014-T [12] benchmarks. Tables 1 and 2 show
the WER scores, while we specify the type of either extra annotations or
modalities used during training for each method.
PHOENIX-2014. Table 1 summarizes the results on Dev and Test splits
from PHOENIX-2014 for several CSLR baselines. First, Ours achieves the
state-of-the-art performances on Test split among RGB-based approaches.
In particular, Ours outperforms the recently proposed FCN [2], fine-grained
labeling [23], VAC [15] with alignment supervision to visual features, and
CMA [33] with both gloss and video augmentation. Moreover, Ours shows
superior performance over several recent methods that explicitly require
extra annotations for training [3, 4, 7], and comparable performances to
SMKD [25] with algorithmic gloss segmentations and STMC [11] using
pose annotations. Note that the proposed method does not require either
extra annotations for acquiring the benefit to detect spatially important
regions or additional networks for the refinement of pseudo-labels.
PHOENIX-2014-T. Table 2 shows the results on Dev and Test splits of
PHOENIX-2014-T. Ours surpasses cnn-lstm-hmm [4] which is trained with
both mouth and hand annotations, and even outperforms SLRT [34] that
jointly learns sign recognition and translation task from both sign glosses
and sentences. Ours also outperforms SMKD [25], a competing baseline
using RGB modality, and shows comparable results to STMC [11].

2WER = (#substitutions + #deletions + #insertions) / (#words in reference)
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WER (%)

DFConv DPLR BTA Dev Test

26.1 26.7

✓ 24.5 24.5
✓ ✓ 22.4 22.5
✓ ✓ 24.2 24.1

✓ ✓ ✓ 20.9 20.8

Table 3. Ablation study of DFConv,
DPLR, and BTA. All the proposed
components of our method gradu-
ally improve the performance.

WER (%)

w/ Lrefine Densify Refine Dev Test

24.2 24.1

✓ 23.5 23.8
✓ ✓ 23.3 23.8
✓ ✓ 22.4 22.5

✓ ✓ ✓ 20.9 20.8

Table 4. Ablation study on the de-
sign choice of DPLR. Both ‘Den-
sify’ and ‘Refine’ processes are key
in improving performance.

4.2. Ablation Study

Component Analysis. In Table 3, we ablate each component of our method
to investigate its effectiveness. In the first row of the table, we show the re-
sult of the baseline model with VGG-11 [35] architecture followed by three
1D convolution layers. All components of our method consistently improve
the performance altogether. In particular, when BTA is combined with
DFConv, the performance improvement is marginal, but when combined
with DPLR, it shows a large performance improvement. From this, we
conclude that DPLR and BTA are complementary modules to each other.
We ablate qualitatively the gloss predictions of each component in Fig. 4.
Design Choice of DPLR. The baseline in the first row of Table 4 is the
same baseline in the fourth row in Table 3, which is the model trained with
DFConv and BTA. ‘Densify’ and ‘Refine’ indicate whether the prediction
from the model is filled by the nearest gloss prediction and whether glosses
are replaced with ground truth glosses, respectively, as shown in Fig. 3.
We show from the second and third row (without ‘Densify’) that directly
leveraging the output of the model brings marginal improvements to the
baseline. ‘Densify,’ which provides direct alignment supervision on the
frame-level to the latent features is the key component for improving the
model performance. Finally, the proposed Dense Pseudo-Labels (DPL),
which is the combination of both ‘Densify’ and ‘Refine’ processes, shows
the best performance by the correction mechanism with ground truth labels
in ‘Refine’ to reduce the noise in dense pseudo-labels.
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Fig. 5. Activation maps from Ours on test-time novel transformations.

VAC STMC Ours Ours†

Transform(T,S) Dev Test Dev Test Dev Test Dev Test

Original 21.2 22.3 21.0 20.7 20.9 20.8 20.9 20.8
A: (↑10%, 1.0) 23.9 24.1 22.9 21.3 22.9 23.0 21.1 21.2
B: (↑20%, 1.0) 27.1 27.1 33.6 32.9 24.2 24.9 22.7 22.5
C: (↑10%, 0.8) 38.5 38.0 42.9 41.1 32.0 30.9 28.5 28.1
D: (↑10%, 1.2) 28.9 29.8 31.4 32.0 26.9 27.1 24.8 24.5

E: (↓10%, 1.0) 30.9 30.4 24.4 24.1 27.2 26.8 24.9 24.6
F: (↓20%, 1.0) 35.5 34.7 31.4 30.0 31.1 30.9 29.7 29.9
G: (↓10%, 0.8) 56.5 52.3 46.7 42.1 46.5 43.9 38.1 37.9
H: (↓10%, 1.2) 28.5 27.5 26.9 28.0 26.2 26.2 26.1 26.3

Average 33.7 33.0 32.5 31.4 29.6 29.2 27.0 26.9

Table 5. Robustness comparison with state-of-the-art methods in simulated
real world scenario. We compare the WER on a model that has been trained
on a train set without these transformations. Ours denotes a model with r
set to 0.35, and Ours† denotes a model where r is moved along with the
transformations during inference (T: vertical translation, S: scale). We note
that STMC is our reproduction. We reimplement it as faithfully as possible.

Robustness of DFConv. Our method is more robust where the signer is
not bounded to a specific region at inference time than the state-of-the-art
methods in practical cases. To simulate such a scenario, we make a set of
transformed data from PHOENIX-2014 Dev and Test splits, each of which
includes a different degree of vertical translation (T) and scale operation (S).
In Table 5, we list RGB based state-of-the-art method (VAC), the pose-based
method (STMC), our model tested with the original division ratio (r=0.35)
(Ours), and our model where the r is changed along the corresponding
transformation (Ours†). Although shifting the r gives the best performance
(Ours†), in the real world, where we are not able to adjust on the fly r
(Ours), the average performance of Ours still surpasses VAC and STMC.

We also present the activation maps of DFConv with the static division
ratio (r=0.35) in Figure 5. DFConv steadily captures non-manual and
manual features even when half of the signer’s face is out of focus (B, D) or
when the signer’s hands are partially out (D, F, H) with failure cases of pose-
detectors shown in our project page. This shows that pose-based sign recog-
nition methods are heavily reliant on the performance of the pose-detector.

5. CONCLUSION

In this paper, we propose two novel methods, DFConv and DPLR, that
complement missing annotations in the existing weakly-labeled sign
language datasets. To the best of our knowledge, we are the first to propose
a method to extract manual and non-manual features individually by
designing a task-specific convolution without any additional networks or
annotations. In addition, we introduce DPLR module that does not require
additional networks during the pseudo-labeling process and demonstrate
its effectiveness through various experiments. The experimental results
show that our framework achieves state-of-the-art performance on two
large-scale benchmarks among RGB-based methods, and also outperforms
or is comparable to methods based on multi-modality.



6. REFERENCES

[1] Sylvie CW Ong and Surendra Ranganath, “Automatic sign language
analysis: A survey and the future beyond lexical meaning,” TPAMI,
vol. 27, no. 06, pp. 873–891, 2005. 1

[2] Ka Leong Cheng, Zhaoyang Yang, Qifeng Chen, and Yu-Wing
Tai, “Fully convolutional networks for continuous sign language
recognition,” in ECCV, 2020, pp. 697–714. 1, 2, 3

[3] Jie Huang, Wengang Zhou, Qilin Zhang, Houqiang Li, and Weiping
Li, “Video-based sign language recognition without temporal
segmentation,” in AAAI, 2018, vol. 32. 1, 2, 3

[4] Oscar Koller, Cihan Camgoz, Hermann Ney, and Richard Bowden,
“Weakly supervised learning with multi-stream cnn-lstm-hmms to
discover sequential parallelism in sign language videos,” TPAMI,
2019. 1, 2, 3

[5] Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan Kim,
Stephen Tyree, and Jan Kautz, “Online detection and classification
of dynamic hand gestures with recurrent 3d convolutional neural
network,” in CVPR, 2016, pp. 4207–4215. 1

[6] Zhipeng Liu, Xiujuan Chai, Zhuang Liu, and Xilin Chen, “Contin-
uous gesture recognition with hand-oriented spatiotemporal feature,”
in ICCVW, 2017, pp. 3056–3064. 1

[7] Runpeng Cui, Hu Liu, and Changshui Zhang, “A deep neural
framework for continuous sign language recognition by iterative
training,” IEEE Transactions on Multimedia, vol. 21, no. 7, pp.
1880–1891, 2019. 1, 3

[8] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and Richard
Bowden, “Subunets: End-to-end hand shape and continuous sign
language recognition,” in ICCV, 2017, pp. 3075–3084. 1, 2, 3

[9] Dong-Jin Kim, Tae-Hyun Oh, Jinsoo Choi, and In So Kweon,
“Dense relational image captioning via multi-task triple-stream
networks,” TPAMI, 2021. 1, 2

[10] Dong-Jin Kim, Xiao Sun, Jinsoo Choi, Stephen Lin, and In So
Kweon, “Acp++: Action co-occurrence priors for human-object
interaction detection,” TIP, vol. 30, pp. 9150–9163, 2021. 1

[11] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li,
“Spatial-temporal multi-cue network for continuous sign language
recognition.,” in AAAI, 2020, pp. 13009–13016. 1, 2, 3

[12] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Hermann Ney,
and Richard Bowden, “Neural sign language translation,” in CVPR,
2018, pp. 7784–7793. 1, 2, 3

[13] Oscar Koller, Jens Forster, and Hermann Ney, “Continuous sign
language recognition: Towards large vocabulary statistical recognition
systems handling multiple signers,” CVIU, vol. 141, pp. 108–125,
2015. 1, 2, 3

[14] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks,” in
ICML, 2006, pp. 369–376. 1, 2

[15] Yuecong Min, Aiming Hao, Xiujuan Chai, and Xilin Chen, “Visual
alignment constraint for continuous sign language recognition,” in
ICCV, October 2021, pp. 11542–11551. 1, 2, 3

[16] Junfu Pu, Wengang Zhou, and Houqiang Li, “Dilated convolutional
network with iterative optimization for continuous sign language
recognition.,” in IJCAI, 2018, vol. 3, p. 7. 1, 2

[17] Natalia Neverova, Christian Wolf, Graham W Taylor, and Florian
Nebout, “Multi-scale deep learning for gesture detection and
localization,” in ECCV, 2014, pp. 474–490. 1

[18] Ke Sun et al., “Deep high-resolution representation learning for
human pose estimation,” in CVPR, 2019. 1

[19] Oscar Koller, Hermann Ney, and Richard Bowden, “Deep hand: How
to train a cnn on 1 million hand images when your data is continuous
and weakly labelled,” in CVPR, 2016, pp. 3793–3802. 2, 3

[20] Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram,
Kenneth DeHaan, Florian Metze, Jordi Torres, and Xavier Giro-i
Nieto, “How2sign: a large-scale multimodal dataset for continuous
american sign language,” in CVPR, 2021, pp. 2735–2744. 2

[21] Oscar Koller, Sepehr Zargaran, and Hermann Ney, “Re-sign:
Re-aligned end-to-end sequence modelling with deep recurrent
cnn-hmms,” in CVPR, 2017, pp. 4297–4305. 2, 3

[22] Runpeng Cui, Hu Liu, and Changshui Zhang, “Recurrent convo-
lutional neural networks for continuous sign language recognition
by staged optimization,” in CVPR, 2017, pp. 7361–7369. 2, 3

[23] Zhe Niu and Brian Mak, “Stochastic fine-grained labeling of
multi-state sign glosses for continuous sign language recognition,”
in ECCV, 2020, pp. 172–186. 2, 3

[24] Junfu Pu, Wengang Zhou, and Houqiang Li, “Iterative alignment
network for continuous sign language recognition,” in CVPR, 2019,
pp. 4165–4174. 2, 3

[25] Aiming Hao, Yuecong Min, and Xilin Chen, “Self-mutual distillation
learning for continuous sign language recognition,” in ICCV, 2021,
pp. 11303–11312. 2, 3

[26] Mike Schuster and Kuldip K Paliwal, “Bidirectional recurrent neural
networks,” TSP, vol. 45, no. 11, pp. 2673–2681, 1997. 2

[27] Chao Fan, Yunjie Peng, Chunshui Cao, Xu Liu, Saihui Hou, Jiannan
Chi, Yongzhen Huang, Qing Li, and Zhiqiang He, “Gaitpart:
Temporal part-based model for gait recognition,” in CVPR, 2020,
pp. 14225–14233. 2

[28] Dan Guo, Wengang Zhou, Houqiang Li, and Meng Wang,
“Hierarchical lstm for sign language translation,” in AAAI, 2018. 2

[29] Oscar Koller, O Zargaran, Hermann Ney, and Richard Bowden,
“Deep sign: hybrid cnn-hmm for continuous sign language
recognition,” in BMVC, 2016. 3

[30] Zhaoyang Yang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai,
“Sf-net: Structured feature network for continuous sign language
recognition,” arXiv:1908.01341, 2019. 3

[31] Hao Zhou, Wengang Zhou, and Houqiang Li, “Dynamic pseudo
label decoding for continuous sign language recognition,” in ICME,
2019, pp. 1282–1287. 3

[32] Chengcheng Wei, Jian Zhao, Wengang Zhou, and Houqiang Li,
“Semantic boundary detection with reinforcement learning for
continuous sign language recognition,” TCSVT, vol. 31, no. 3, pp.
1138–1149, 2020. 3

[33] Junfu Pu, Wengang Zhou, Hezhen Hu, and Houqiang Li, “Boost-
ing continuous sign language recognition via cross modality
augmentation,” in MM, 2020, pp. 1497–1505. 3

[34] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and Richard
Bowden, “Sign language transformers: Joint end-to-end sign language
recognition and translation,” in CVPR, 2020, pp. 10023–10033. 3

[35] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in ICLR, 2015. 4


	 Introduction
	 Related works
	 Method
	 Divide and Focus Convolution
	 Dense Pseudo-Label Refinement

	 Experiments
	 Experimental Results
	 Ablation Study

	 Conclusion
	 References

